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Abstract
We calculate correlation functions of the (signed) density of zeros of Gaussian
distributed vector fields. We are able to express correlation functions of
arbitrary order through the curvature tensor of a certain abstract Riemann
Cartan or Riemannian manifold. As an application, we discuss one- and two-
point functions. The zeros of a two-dimensional Gaussian vector field model
the distribution of topological defects in the high-temperature phase of two-
dimensional systems with orientational degrees of freedom, such as superfluid
films, thin superconductors and liquid crystals.

PACS numbers: 02.40, 47.32, 42.30

1. Introduction

Topological defects play an important role in two-dimensional physics, and are observed in
liquid crystal films [1], two-dimensional crystals [2, 3], superconducting films [4–6], films
of superfluid helium [7], arrays of Josephson contacts [8, 9], nodal points of quantum and
microwave billiards [10–12] and nodal points in optical waves [13, 14]. Common to these
systems are orientational degrees of freedom with a global O(2) symmetry. The above
systems are either in an orientationally ordered or disordered state. Even in the ordered state,
the orientational order is usually not perfect, but modified by the presence of massless spin
waves. The corresponding correlation functions decay algebraically with distance (quasi-long-
range order). In the disordered state, orientational order is destroyed through the spontaneous
creation and subsequent unbinding of pairs of topological defects. The disordered phase
is characterized by a finite density of these defects and exponentially decaying correlation
functions. A suitable order parameter for two-dimensional orientational order is a two-
component vector field u(r) = (u1, u2)(r1, r2). Topological defects are points, where the
amplitude of the director field u vanishes. Circling around a defect, the phase of u adds
up ±2π (or rarely multiples of ±2π). We distinguish between positive and negative zeros
(defects), where the sign of the defects (sign of the phase jump) is equal to the sign of the
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Figure 1. The planar vector field (ux, uy) = (x2 − 1, y) with a negative zero (left) and a positive
zero (right).

Jacobian det(∂iuj ) right at the zero u = 0. Figure 1 illustrates the two types of zeros. A
crucial feature of the defects is the topological constraint on the number of positive zeros
minus the number of negative zeros on a closed surface [15]

number of positive zeros − number of negative zeros = 2(1 − γ ) (1)

where γ is the number of handles of the surface. A sphere has therefore at least two positive
defects, whereas a director field on a torus might be free of defects. Additional defects are
created in pairs of opposite sign in order to obey the topological constraint (1). In this paper
we consider the distribution of defects in the disordered (high-temperature) phase, where the
director field u has a Gaussian distribution. First, we calculate general correlation functions
of the (signed) defect density for arbitrary vector fields with a Gaussian distribution. As an
application we study the mean defect density for certain distributions of u on curved manifolds.
Then we give a transparent derivation of the two-point correlation function for a particular
class of vector fields. Finally we check the neutrality of the defect distribution.

Densities of zeros were discussed before in the context of nodal points of chaotic
wavefunctions in microwave billiards [12, 16, 17], random surfaces [18–27] and for the
XY-model [28, 29]. Extensively studied are the optical dislocations (optical vortices) of
‘chaotic’ optical wave fields [13, 14, 30–41] which are well modelled by Gaussian distributed
wave fields. The distribution of zeros of Gaussian random polynomials and Gaussian
random analytic functions was discussed in [42–47]. Random polynomials and random
analytic functions have only positive zeros1 and are therefore quite different from the systems
considered here.

2. Correlation functions

We denote the positions of the zeros of a d-dimensional vector field ui in d-dimensional space
by rα and the charge (type of the extremum) by qα = sign det(∂iuj (rα)). The charge density
reads ρ(r) = ∑

α qαδ
d(r − rα) and can be written as

ρ(r) = det(∂iuj (r))δd(u(r)). (2)

To prove this representation, consider a particular field ui with a zero at the origin and its
expansion ui(r) = Aij rj + · · · for small r, where Aij = ∂jui(r = 0) is the derivative of ui at
1 The real and imaginary parts of an analytic function are harmonic functions, which have only saddle points as
extremal points.
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the origin and summation over double indices is implied. Then det(∂iuj ) = det A + · · · and
δd(u) = δd(Aij rj ) = |det A|−1δd(r). Combining both, we obtain

det(∂iuj )δ
d(u) = det A

|det A|δ
d(r) = ±δd(r). (3)

We consider now a Gaussian distributed vector field ui with correlations χij (r, r′) =
〈ui(r)uj (r

′)〉 and provide a scheme to calculate arbitrary correlation functions
〈ρ(r1) · · ·ρ(rf )〉 of the charge density ρ, where r1, . . . , rf are f points and 〈· · ·〉 denotes
the average with respect to the Gaussian distribution of the field ui .

We write a determinant as an integral over Grassmann variables θi, ηi

det A =
∫

(dη dθ)d exp(θiηjAij ) (4)

(for an introduction to the calculus of Grassmann variables see [48]). To regularize the theory
it is helpful to replace the sharp delta function by a Gaussian with a small but finite width ω

and to use its Fourier representation

δω(x) = 1

(2πω)d/2
exp

(
− x2

2ω

)
= (2π)−d

∫
ddp exp

(
−1

2
ωp2 − ip · x

)
. (5)

We obtain

ρ = lim
ω→0

(2π)−d

∫
ddp(dη dθ)d exp(−ωp2/2 + �(r, p, θ, η)) (6)

where the field � depends on 2d bosonic coordinates (r, p) and 2d fermionic variables (θ, η)

and reads

�(r,p, θ, η) = ipiui(r) + θiηj ∂iuj (r). (7)

Since � is linear in ui and its derivatives, it has also a Gaussian distribution with correlations

〈�(xA)�(xB)〉 = 〈(
θA
i ηA

j ∂iuj (rA) + ipA
i ui(rA)

) (
θB
k ηB

l ∂kul(rB) + ipB
k uk(rB)

)〉
(8)

where x = (r, p, θ, η). The correlation function for finite width ω translates into

〈ρ(r1) · · ·ρ(rf )〉 = (2π)−f d

∫
df dp(dη dθ)fd

〈
exp

(
−(ω/2)

∑
α

p2
α +

∑
α

�(xα)

)〉
. (9)

The Gaussian average can now be performed with the help of〈
exp

(∑
α

�(xα)

)〉
= exp


1

2

∑
αβ

〈�(xα)�(xβ)〉

 (10)

yielding (summation over double i, j, k, l,m, n is implied, the partial derivatives act on the
leftmost field only)

〈ρ(r1) · · ·ρ(rf )〉 =
∫

(dη dθ)f d(2π)−f d

∫
df dp exp


1

2

∑
αβ

θα
i ηα

j θ
β

k η
β

l 〈∂iuj (rα)∂kul(rβ)〉

+ i
∑
αβ

θα
i ηα

j p
β

k 〈∂iuj (rα)uk(rβ)〉 − 1

2

∑
αβ

pα
i p

β

k (ωδikδαβ + 〈ui(rα)uk(rβ)〉)

.

(11)
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After a straightforward (Gaussian) integration over the variables p we find

〈ρ(r1) · · ·ρ(rf )〉 = (2π)−f d/2(det g)−1/2
∫

(dη dθ)fd

× exp


1

2

∑
αβ

θα
i ηα

j θ
β

k η
β

l


〈∂iuj (rα)∂kul(rβ)〉

−
∑
µν

〈∂iuj (rα)um(rµ)〉gmµ,nν〈un(rν)∂kul(rβ)〉




 (12)

where we have introduced the formal metric tensor

giα,jβ (r1, . . . , rf ) = ωδij δαβ + 〈ui(rα)uj (rβ)〉 (13)

and its inverse giα,jβ = (giα,jβ )−1, where a pair of a roman and a greek index iα is understood
as a single composite index. Now we interpret the tensor giα,jβ as the metric tensor of a
particular, f × d-dimensional manifold. The manifold is parametrized by f × d internal
coordinates σ = (r1, . . . , rf ). It becomes singular in the limit ω → 0 whenever at least two
points rα approach, since for two coinciding points two rows of the metric tensor become equal
and det(giα,jβ ) = 0 therefore. These singular points show up as delta-like singularities in the
correlation functions as shown in section 4.1. In addition to the metric tensor we introduce an
affine connection

�
kγ

jβ,iα = δαβ〈∂iuj (rβ)um(rµ)〉gmµ,kγ . (14)

The affine connection allows us to define a covariant derivative of a covariant vector field Vjβ

DiαVjβ = ∂iαVjβ − �
kγ

jβ,iαVkγ (15)

where ∂iα = ∂/∂ri,α . The covariant derivative of a rank two tensor is2

Diαtjβ,kγ = ∂iαtjβ,kγ − �
mµ

jβ,iα tmµ,kγ − �
mµ

kγ,iα tjβ,mµ. (16)

A simple calculation shows the compatibility of the covariant derivative with the metric tensor
Diαgjβ,kγ = 0. The metric tensor together with the affine connection defines a so-called
Riemann–Cartan manifold, which is a generalization of a Riemannian manifold [15]. Unlike
the latter, it has a non-zero torsion tensor T

kγ

iα,jβ = �
kγ

iα,jβ − �
kγ

jβ,iα . The commutator of two
covariant derivatives defines the curvature tensor

(DiαDjβ − DjβDiα)Vkγ = Rkγ
lλ

iα,jβVlλ + T
mµ

iα,jβDmµVkγ . (17)

A straightforward calculation yields

Rkγ,lλ,iα,jβ = δαγ δβλ〈∂iuk(rγ )∂jul(rλ)〉 − δαγ δβλ〈∂iuk(rγ )um(rµ)〉gmµ,nν〈un(rν)∂jul(rλ)〉
− (iα) ↔ (jβ) (18)

where we have used the metric tensor to transform a contravariant (upper) index into a covariant
(lower) index giα,jβV jβ = Viα . The curvature tensor allows us to simplify the expression for
the correlation function

〈ρ(r1) · · ·ρ(rf )〉 = (2π)−f d/2(det g)−1/2
∫

(dη dθ)fd exp

(
−1

4
θ

γ

k θλ
l ηα

i η
β

j Rkγ,lλ,iα,jβ

)

= (2π)−f d/2(det g)1/2
∫

(dη dθ)fd exp

(
−1

4
θ

γ

k θλ
l ηα

i η
β

j Rkγ
lλ

iα
jβ

)
. (19)

2 The covariant derivative of higher-rank tensors is defined analogously, see [15].
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It is quite remarkable that the correlation function is a purely geometrical object from the point
of view of differential geometry—it depends on the metric tensor and the curvature tensor of
a Riemann–Cartan manifold with metric tensor giα,jβ = ωδij δαβ + 〈ui(rα)uj (rβ)〉 and affine
connection �

kγ

jβ,iα = δαβ 〈∂iuj (rβ)um(rµ)〉gmµ,kγ . It should be noted that correlations of the
number density [17, 40] (absolute value of the density) |ρ| cannot be obtained by the above
formalism.

In the case of a vector field ui placed on a curved Riemannian manifold with metric
Gij (σ ), one has to refer to a covariant version of the density of extrema (σ = (σ 1, . . . , σ d)

are the internal coordinates to parametrize the manifold, ∇i is the covariant derivative related
to the metric Gij )

ρ(σ) = det(Gij∇j uk)
1

2πω
exp

(
− 1

2ω
Gijuiuj

)
→ (det G)−1/2 det(∂iuj )δ

2(ui) for ω → 0 (20)

where ∇iuj = ∂iuj at the zeros of ui . The density differs from the Euclidean version only by
the factor (det G)−1/2.

2.1. Gradient fields

A particular important class of vector fields are the gradient fields ui = ∂iφ with a Gaussian
distributed scalar field φ. One might think of φ as a Gaussian random surface [18, 19] with
local height z = φ(x, y). The zeros of ∂iφ are the extremal points of φ. Extremal points with
a positive signature are the maxima and minima of the function, whereas the saddle points
of φ have a negative sign. The scalar field φ should not be confused with the (polar) angle
θ of a vector field u = u(cos θ, sin θ). The angular field θ is defined modulo 2π and has
singularities (at the zeros of u), whereas the field φ is nonsingular and single valued. The
metric tensor (13) for ∂iφ reads

giα,jβ = ωδij δαβ + 〈∂iφ(rα)∂jφ(rβ)〉. (21)

(The latter metric tensor is also introduced in [25–27] in the context of excursion sets.) The
corresponding affine connection

�
kγ

jβ,iα = δαβ〈∂i∂jφ(rβ)∂mφ(rµ)〉gmµ,kγ (22)

is symmetric in the lower indices, i.e. the torsion tensor T
kγ

iα,jβ is zero. The vanishing torsion
characterizes a Riemannian manifold, where the affine connection is determined solely by the
metric tensor g

�
kγ

jβ,iα = 1
2 (∂jβgmµ,iα + ∂iαgmµ,jβ − ∂mµgiα,jβ ). (23)

The Riemannian curvature tensor reads in this case

Rkγ,lλ,iα,jβ = δβλδαγ (〈∂j ∂lφ(rβ)∂i∂kφ(rα)〉
− 〈∂j∂lφ(rβ)∂mφ(rµ)〉gmµ,nν〈∂nφ(rν)∂i∂kφ(rα)〉) − (iα) ↔ (jβ). (24)

The defect density correlation function reads 〈ρ(r1) · · ·ρ(rf )〉 = (2π)−f d/2(det g)1/2�,
where the Grassmann integral

� =
∫

(dη dθ)f d exp

(
−1

4
θ

γ

k θλ
l ηα

i η
β

j Rkγ
lλ

iα
jβ

)
(25)
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is the so-called total curvature. It is zero for odd dimensions (here dimension = f × d). Its
(covariant) integral over a (closed) surface is a topological invariant according to the theorem
of Chern (1944) [49, 15]. Indeed, the f -fold spatial integral over the manifold yields

f∏
α=1

∫
ddrα(det G(rα))

1/2〈ρ(r1) · · · ρ(rf )〉 = (2(1 − γ ))f . (26)

We will now specialize our main result (19). First we calculate one-point functions and
two-point functions.

3. Density of defects—the one-point function

3.1. The high-temperature phase of the XY-model

We calculate the defect density of a XY-model, placed on an arbitrary curved surface, in the
disordered (high-temperature) region [29]. The Gaussian weight of a configuration ui in the
high-temperature region is

P [u] ∝ exp

(
−1

2

∫
dA(∇iuj∇ iuj + (τ + (η + 1)R/2)uiu

i)

)
(27)

where dA = √
det Gij d2σ is the invariant area element,Gij is the metric and ∇i is the covariant

derivative of the surface [15] (a short introduction to the differential geometry of surfaces can
also be found in [50]). The mass τ determines the correlation length ξ = τ−1/2 of the vector
field and, therefore, the distance from the critical point. In addition, we have introduced a
curvature-dependent mass term as discussed in [29]. The weight (27) is invariant under global
O(2)–transformations ui → cos(α)ui + sin(α)εi

juj , where εij is the covariant antisymmetric
unit tensor with respect to the surface. The metric tensor reads gij = 〈uiuj 〉 = Gij 〈umum〉/2,
since Gij is the only symmetric rank two tensor invariant under O(2). The affine connection
is

�k
ji = 〈∂iujum〉gmk = 〈∇iujum〉gmk + γ k

ji (28)

where γ k
ji is the affine connection of the underlying surface. Due to the O(2) invariance we

can write [29]

〈∇iujum〉 = 1
2Gjm〈∇iunu

n〉 + 1
2εjmεnp〈∇iunup〉 (29)

and

�k
ji = γ k

ji + εj
k�i + δk

j ∂i log(〈u2〉)/2 (30)

where �i = εnp〈∇iunup〉/〈u2〉. The gradient term does not contribute to the curvature tensor
since it can be eliminated by a gauge transformation. The curvature tensor reads (Rs is the
Riemann curvature tensor of the surface, R is the scalar curvature of the surface)

Rk
l
ij = Rs

k
l
ij − (∇i�j − ∇j�i)εk

l (31)

and

Rijkl = 〈u2〉
2

(R/2 − εmn∇m�n)εklεij . (32)

The Grassmann integral (37) is now trivial, and we obtain finally

2πρ = (R/2 − εij∇i�j ). (33)
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The topological constraint (1) for the total charge is easily verified since

2π

∫
dAρ =

∫
dA(R/2 − εij∇i�j ) =

∫
dAR/2 = 4π(1 − γ ) (34)

due to the theorem of Stokes [50]. This expression for the density of defects was already
obtained by a direct calculation and further analysed in [29]. It was shown that the signed
density of zeros of the Gaussian XY-model with distribution (27) is equal (up to terms of
order τ−2) to the charge density of the two-dimensional Coulomb gas in the Debye–Hückel
approximation. This is not surprising, since both approaches can be used to describe the
high-temperature region of the two-dimensional Coulomb gas [28]. In the next section we
show that the extremal points of a Gaussian field φ behave in a similar manner.

3.2. Incompressible and irrotational vector fields

We calculate now the defect density 〈ρ〉 for vector fields which are subject to an additional
constraint, namely, the divergence or curl of the field must vanish. A field with vanishing
divergence (curl) can be expressed via a ‘potential’ φ through ui = εi

j ∂jφ or ui = ∂iφ

respectively. We plug this representation of ui into the weight (27) and obtain the statistical
weight for the scalar field φ

P [φ] ∝ exp

(
−1

2

∫
dA((�LBφ)2 + (τ + ηR/2)∂iφ∂iφ)

)
(35)

where �LB = Gij∇i∂j is the covariant Laplace–Beltrami operator of the surface. The defects
are the points where the vector field ui is zero, i.e. where the potential φ has an extremal point.
The charge of the defect is the sign of the derivate of ui :

sign det(∂iuj ) = sign det(∂i∂jφ) (36)

for both cases. The mean defect density is according to theorem (19)

ρ = (2π)−1(det G)−1/2(det g)−1/2
∫

dη1 dθ1 dη2 dθ2

× exp

(
1

2
θlηj θkηi(〈∂i∂kφ∂j ∂lφ〉 − 〈∂i∂kφ∂mφ〉gmn〈∂nφ∂j∂lφ〉)

)

= (det g)1/2

2π(detG)1/2

∫
dη1 dθ1 dη2 dθ2 exp

(
−1

4
θkθlηiηjR

k
l
i
j

)
(37)

where gij = 〈∂iφ∂jφ〉. The Riemannian curvature tensor in two dimensions has only one
independent component—the scalar curvature R̃ = Rkl

kl

Rklij = 〈∂i∂kφ∂j∂lφ〉 − 〈∂i∂kφ∂mφ〉gmn〈∂nφ∂j ∂lφ〉 − (i ↔ j)

= εklεij R̃/2 (38)

where εij is the covariant, antisymmetric unit tensor with respect to the metric gij : ε12 =√
det g, ε21 = −√

det g. The Grassmann integral (37) is trivial, and we obtain finally

2πρ
√

det G = (R̃/2)
√

det g. (39)

The density of defects is according to equation (39) the scalar curvature of an abstract surface
(Riemannian manifold) with metric gij = 〈∂iφ∂jφ〉. Therefore, with the help of the Gauss–
Bonnet theorem and of equation (39)

2π(number of positive defects − number of negative defects) = 2π

∫
d2σ

√
det gρ

=
∫

d2σ
√

det gR̃/2 = 4π(1 − γ ) (40)
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where γ is the genus (number of handles) of both the abstract surface gij
3 and the underlying

surface Gij , since the abstract surface is closely related to the underlying surface and especially
inherits its topology. The calculation of the curvature can be done in a large τ -expansion (high-
temperature expansion) for the special case η = 0. From general considerations, the first two
terms of the 1/τ -expansion of gij read

gij = 〈∂iφ∂jφ〉 = AGij + B
R

τ
Gij + O(τ−2) (41)

with constants A,B to be determined. We multiply equation (41) with Gij and obtain (R is
the scalar curvature of the surface; the Laplace–Beltrami operator �LB refers to the surface as
well)

Gijgij = 2A + 2BR/τ = 〈∂iφ∂iφ〉 = 1

2
�LB〈φ2〉 − 〈φ�LBφ〉

= 1

2τ
�LB(〈φ(τ − �LB)φ〉 + 〈φ�LBφ〉) − 〈φ�LBφ〉

= 1

4π
log

(
1

a2τ

)
− R

12πτ
+ O(τ−2) (42)

where a is a short-distance cutoff. In [29] the following relations are reported

�LB〈φ(τ − �LB)φ〉 = −R/(4π)
(43)

−〈φ�LBφ〉 = 1

4π
log

(
1

a2τ

)
+

R

24πτ
+ O(τ−2).

The density ρ can now be obtained using the fact that the metric gij is conformally equivalent
to the underlying metric Gij (up to order 1/τ ). With the further help of equation (39) we find
as our final result4

2πρ = R/2 − 1

2
�LB log

(
1

8π
log

(
1

a2τ

)
− R

24πτ

)

≈ R

2
+

1

6τ log(1/(a2τ ))
�LBR

= R

2
+

1

6πτZ
�LB

R

2
(44)

where Z = log(1/(a2τ ))/(2π).
Expression (44) demonstrates that the ‘gas’ of zeros of an incompressible or irrotational

Gaussian vector field or likewise the set of extremal points of the potential φ (random surface)
behaves approximately as the two-dimensional Coulomb gas in the high-temperature phase.
The latter system is well described by the Debye–Hückel Hamiltonian for the continuous
charge density ρ

H

T
= KA

2

∫
dA

∫
dA′(2πρ − R/2)σ G(σ, σ ′)(2πρ − R/2)σ ′ +

1

2x

∫
dAρ2 (45)

where x is the fugacity of the charges. By setting δH/δρ = 0, we obtain for the mean charge
density

2πρ = 1

1 − 1
4π2KAx

�
K = K +

1

4π2KAx
�K + O(x−2) (46)

3 The number of handles is zero for a sphere and one for a toroidal surface.
4 The terms of orders τ 0 and τ−1 do not depend on the coefficient η.
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which is equivalent to (44) provided we identify 6τZ = 4πKAx. The analogy between
the extremal points of φ and the Coulomb gas is not perfect and is valid only in the high-
temperature region (see [29, 51]). As already pointed out in section 2.1, the scalar field φ is
a nonsingular, single-valued object and must be distinguished from a field of polar angles θ .
The latter field (not considered here) is multivalued and has singularities which behave exactly
as Coulomb charges [52, 53].

For a flat geometry Gij = δij , the average defect density is zero, since

〈∂iφ∂jφ〉 = δij

2(2π)2

∫
d2p

1

p2 + τ
(47)

is also a flat metric with vanishing curvature.

4. The two-point function

The calculation of the two-point function C(r) ≡ 〈ρ(r)ρ(0)〉 is done here for a Euclidean
d-dimensional geometry and a particular class of (isotropic) vector fields ui with independent
components u1 and u2. The correlation function reads

〈ui(r)uj (r
′)〉 = δijG(|r − r′|) (48)

equipped with an appropriate short-distance cutoff. Examples are random waves [54] with
G(r) = J0(kr) and the Gaussian XY-model [28] with G(r) = K0(

√
τr), where J0 is the

zeroth order Bessel function and K0 is the modified Bessel function of order zero. Gradients
of Gaussian scalar fields do not fall into the above class, since the components of the gradient
∂iφ are not independent. The metric tensor and its inverse are now

giα,jβ = δij (δαβG0 + cαβG(r)) giα,jβ = δij

δαβG0 − cαβG(r)

G2
0 − G2(r)

(49)

where G0 = ω + G(0), cαβ = 1 − δαβ, i, j = 1, . . . , d and α, β = 1, 2. The determinant of g

is det g = (
G2

0 − G2(r)
)d

. The affine connection is

�kγ,iα;mµ = δαγ 〈∂iuk(rγ )um(rµ)〉 = δαγ eγµδkm∂iG(r) (50)

where γ is not summed and e12 = 1, e21 = −1, e11 = e22 = 0. We obtain the curvature tensor

Rkγ,lλ,iα,jβ = δkl(δαγ δβλ − δαλδβγ )

(
−∂i∂jG(r) − eγµeλν∂iG(r)∂jG(r)

δµνG0 − cµνG(r)

G2
0 − G2(r)

)

=−δkleαβeγλ

(
∂i∂jG(r) + ∂iG(r)∂jG(r)

G(r)

G2
0 − G2(r)

)

= −
√

G2
0 − G2(r)δkleαβeγλ∂i∂jK(r) (51)

where K(r) = arcsin(G(r)/G0) and the indices γ, λ are not summed. The two-point
correlation function C(r) = 〈ρ(r)ρ(0)〉 now reads

(2π)dC(r) = (
G2

0 − G2(r)
)−d/2

∫
(dη dθ)2d exp

(
θ1
k θ2

k η1
i η

2
j

√
G2

0 − G2(r)∂i∂jK(r)
)

= (−1)dd!
∫

(dη2 dη1)d exp
(
η1

i η
2
j ∂i∂jK(r)

)
= (−1)dd! det(∂i∂jK(r)) (52)

since the term (· · ·)d/d! of the exponential is the only one which contributes to the result. The
square root √

G2
0 − G2(r) is therefore cancelled by the prefactor. The integration over the

θ -variables yields an extra factor (−1)dd!. Denoting ∂(· · ·)/∂r = (· · ·)′ we end up with

(2π)dC(r) = (−1)dd!K(r)′′(K(r)′/r)d−1. (53)
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This result was already obtained by direct calculations [17, 28, 40, 55] for the limiting case
ω → 0. The correlation function C(r) is a functional of the ratio G(r)/G0 and is therefore
independent of the scale T of the field ui (in the limit of a sharp delta function ω → 0).

4.1. Singular behaviour of correlations for coinciding points and neutrality

Each vector field placed on a closed surface is subject to the topological constraint (1), implying
a neutrality condition for correlation functions∫

d2σ
√

det G〈ρ(σ)ρ(σ ′)〉 =
〈
ρ(σ ′)

∑
α

qα

〉
= 2(1 − γ )〈ρ(σ ′)〉 (54)

where Gij (σ ) is the metric tensor of the surface. Analogue constraints apply to higher order
correlation functions. To find a neutrality condition for vector fields on an infinite planar
geometry, we note that the density ρ can be written as a divergence (for a finite width ω)

ρ = ei1,...,id

∏
k

∂ikuk(2πω)−1/2 exp(−(uk)
2/(2ω))

= ei1,...,id

∏
k

∂ik erf(uk/
√

ω)

= ∂i

(
ei,i2,...,id erf(u1/

√
ω)

d∏
k=2

∂ik erf(uk/
√

ω)

)
(55)

where erf(x) = (2π)−1/2
∫ x

0 ds exp(−s2/2) is the error function and ei1,...,id is the
antisymmetric unit tensor in d dimensions. Then the total charge of a vector field is zero, i.e.∫

d2r〈ρ(r)ρ(r′)〉 = 0 (56)

provided that the correlations 〈erf(ui(0)) erf(uj (r))〉 ∼ 〈ui(0)uj (r)〉 decay fast enough (at
least ∼ r−1/2) for r → ∞. On the other hand, the correlation function should behave like a
delta function for r → r′ and ω → 0 since

〈ρ(r)ρ(r′)〉 =
∑
αβ

〈qαδ
2(r − rα)qβδ2(r′ − rβ)〉

=
∑

α

〈δ2(r − rα)δ2(r′ − rα)〉 +
∑
α =β

〈qαδ2(r − rα)qβδ2(r′ − rβ)〉

= δ2(r − r′)
∑

α

〈δ2(r − rα)〉 +
∑
α =β

〈qαδ
2(r − rα)qβδ2(r′ − rβ)〉

= n0(r)δ2(r − r′) +
∑
α =β

〈qαδ
2(r − rα)qβδ2(r′ − rβ)〉 (57)

where n0 = 〈|det(∂iuj )|δ2(u)〉 is the absolute density of zeros [28]. We consider now a planar
geometry and vector fields with an isotropic distribution. Then n0 is spatially constant and
both 〈ρ(r)ρ(r′)〉 and

∑
α =β〈qαδ2(r − rα)qβδ2(r′ − rβ)〉 are functions of |r − r′| only. We

integrate equation (57) over r′ and obtain (see also [28, 38, 40, 55])

0 = n0 +
∫

|r|〉a
d2rC(r) (58)

where we have used equation (56). The integral extends over two-dimensional space with the
exception of an infinitesimal small disk (radius a → 0) at the origin. For d = 2 and vector
fields with correlation function (48) we have found (see equation (53) in the preceding section)

C(r) = ((K ′(r))2)′

(2π)2r
. (59)
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The correlation function of the vector field u must be regularized at short distances and can
therefore be expanded for small radii G(r) = G(0) + r2G′′(0)/2 + · · · (G′′(0) < 0), which
implies (for small ω)

K(r) = arcsin(G(r)/G0) = π

2
−

(
2ω

G0
+

−G′′(0)

G0
r2

)1/2

+ · · ·

= π

2
−

√
−G′′(0)

G0

√
a2 + r2 + · · · (60)

where a2 ≡ 2ω/(−G′′(0)). We obtain for ω → 0 with K ′(r) → 0 for r → ∞

−n0 = 2π

∫ ∞

0+

r drC(r) = 1

2π
(K ′(r))2

∣∣∣∣
∞

0+

= G′′(0)

2πG(0)
. (61)

The function K(r) has for ω → 0 a conical singularity at the origin. The correlation function
C(r) ∝ det(∂i∂jK(r)) can now be interpreted as the Gaussian curvature of that cone, which
is in fact concentrated at its tip. Using equation (59), we find the anticipated short-distance
behaviour of the two-point correlation function C(r)

C(r) ∼
(−G′′(0)

G0

)
2a2

(2π)2(r2 + a2)2
∼ −G′′(0)

2πG(0)
δ2(r) = n0δ

2(r). (62)

5. Conclusions

We have proposed a scheme to evaluate correlation functions of the (charge-) density of
zeros ρ of random vector fields ui with a Gaussian distribution. The zeros carry a charge
q = sign J = ±1, where J = det(∂iuj ) is the Jacobian of the vector field right at the zero. In
two dimensions for instance, positive zeros resemble sources, sinks or vortices, while negative
ones have a saddle-like flow. We could show that the correlation functions 〈ρ(r1) · · · ρ(rf )〉
can be expressed through the curvature of an abstract f × d-dimensional Riemann–Cartan
manifold (d is the dimension of both the vector field and the embedding space). In the case of
gradient fields ui = ∂iφ, the correlation functions are the total curvature of a certain f × d-
dimensional Riemannian manifold. As an application, we have calculated the mean charge
density for various vector fields on curved two-dimensional surfaces. Furthermore, we derived
the two-point function for isotropic vector fields with independent components. We checked
the neutrality sum rule, which follows from the topological constraint of the total charge and
obtained in addition the short-distance behaviour of the two-point correlation function. We
have seen that the zeros of Gaussian vector fields are a model for the two-dimensional Coulomb
gas in the high-temperature region. This opens a convenient route to study these systems in
curved or bounded geometries. The geometrical view helps to calculate one- and two-point
correlation functions and could also be rather useful to ‘tame’ the higher order correlation
functions of Gaussian zeros.

The present work demonstrates that the signed zeros of vector fields with a Gaussian
distribution are not only sensitive to curvature, the correlation functions of the charge density
are the curvature of an abstract manifold, which is closely related to the embedding manifold.
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[10] Seba P, Kuhl U, Barth M and Stöckmann H-J 1999 Experimental verification of topologically induced vortices

inside a billiard J. Phys. A: Math. Gen. 32 8225–30
[11] Berry M V Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations,

curvature 2002 J. Phys. A: Math. Gen. 35 3025–38
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